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Abstract
Solving the electronic structure problem for nanoscale systems remains a computationally
challenging problem. The numerous degrees of freedom, both electronic and nuclear, make the
problem impossible to solve without some effective approximations. Here we illustrate some
advances in algorithm developments to solve the Kohn–Sham eigenvalue problem, i.e. we solve
the electronic structure problem within density functional theory using pseudopotentials
expressed in real space. Our algorithms are based on a nonlinear Chebyshev filtered subspace
iteration method, which avoids computing explicit eigenvectors except at the first
self-consistent-field iteration. Our method may be viewed as an approach to solve the original
nonlinear Kohn–Sham equation by a nonlinear subspace iteration technique, without
emphasizing the intermediate linearized Kohn–Sham eigenvalue problems. Replacing the
standard iterative diagonalization at each self-consistent-field iteration by a Chebyshev
subspace filtering step results in a significant speed-up, often an order of magnitude or more,
over methods based on standard diagonalization. We illustrate this method by predicting the
electronic and vibrational states for silicon nanocrystals.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

One of the most significant goals in computational physics
is the development of new algorithms and physical concepts
for describing matter at all length scales, especially at
the nanoscale. This goal has assumed more significance
owing to interest in the role of quantum size effects or
quantum confinement [1]. Quantum confinement offers one
the opportunity to alter the physical properties of matter
without changing the chemical composition. For example,
quantum confinement in CdSe nanocrystals can be used
to tune the optical gap across the visible spectrum [2].
Also, Si crystals can be made optically active at nanolength
scales [3, 4].

Achieving an efficacious algorithm for predicting the
role of quantum confinement and its role in determining the
properties of nanocrystals is a difficult task owing to the
complexity of nanocrystals, which often contain thousands
of atoms. However, notable progress has been accomplished
by implementing new algorithms designed for highly parallel
platforms.

2. The electronic structure problem

The spatial and energetic distributions of electrons can be
described by a solution of the Kohn–Sham equation [5]:

(−h̄2∇2

2m
+ V p

ion + VH + Vxc

)
ψn = Enψn (1)
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where V p
ion is an ionic pseudopotential [6, 7], VH is the Hartree

or Coulomb potential and Vxc is the exchange–correlation
potential. The Hartree and exchange–correlation potentials can
be determined from the electronic charge density. The density
is given by

ρ(�r) = e
∑

n,occup

|ψn(�r)|2. (2)

The summation is over all occupied states. The Hartree
potential is then determined by

∇2VH(�r) = −4πeρ(�r). (3)

This term can be interpreted as the electrostatic interaction of
an electron with the charge density of the system.

The exchange–correlation potential is more problematic.
This potential can be evaluated using a local density
approximation. The central tenet of this approximation is
that the total exchange–correlation energy may be written as
a universal functional of the density:

Exc[ρ] =
∫
ρ(�r)εxc[ρ(�r)] d3r, (4)

where εxc is the exchange–correlation energy density. Exc and
εxc are to be interpreted as depending solely on the charge
density. The exchange–correlation potential, Vxc, is then
obtained as Vxc = δExc[ρ]/δρ.

It is not difficult to solve the Kohn–Sham equation
(equation (1)) for an atom. This atomic solution provides the
input to construct a pseudopotential representing the effect of
the core electrons and nucleus. This ‘ion core’ pseudopotential,
V p

ion, can be transferred to other systems such as molecules and
nanocrystals [6, 7].

The Kohn–Sham equations represent a nonlinear, self-
consistent eigenvalue problem. Typically, a solution is
obtained by first approximating the Hartree and exchange–
correlation potentials using a superposition of atomic charge
densities. The Kohn–Sham equation is then solved using these
approximate potentials. From the solution, new wavefunctions
and charge densities are obtained and used to construct updated
Hartree and exchange–correlation potentials. The process is
repeated until the ‘input’ and ‘output’ potentials agree and a
self-consistent solution is realized. At this point, the total
electronic energy can be computed along with a variety of other
electronic properties [6, 7].

Once the Kohn–Sham equation is solved, the total
electronic energy, ET, of the system can be evaluated from

ET =
∑

n,occup

En − 1
2

∫
VH(�r)ρ(�r) d3r

+
∫
ρ(�r)(εxc[ρ(�r)] − Vxc[ρ(�r)]) d3r. (5)

The structural energy can be obtained by adding the ion core
electrostatic terms [6, 7]. Interatomic forces can be obtained
by taking the derivative of the energy with respect to position.

3. Algorithms for solving the Kohn–Sham equation

The Kohn–Sham equation as cast in equation (1) can be solved
using a variety of techniques. Often the wavefunctions can
be expanded in a basis such as plane waves or Gaussians and
the resulting secular equations can be solved using standard
diagonalization packages such as those found in VASP [8].

Here we focus on a different approach. We solve the
Kohn–Sham equation without resort to an explicit basis [9–13].
We solve for the wavefunctions on a uniform grid within a
fixed domain. The wavefunctions outside of the domain are
required to vanish for confined systems or assume periodic
boundary conditions for systems with translational symmetry.
In contrast to methods employing an explicit basis, such
boundary conditions are easily incorporated. In particular, real
space methods do not require the use of supercells for localized
systems. As such, charged systems can easily be examined
without considering any electrostatic divergences.

Within a ‘real space’ approach, one can solve the
eigenvalue problem using a finite element or finite difference
approach [10, 11, 13]. We use a higher-order finite difference
approach owing to its simplicity in implementation. The
Laplacian operator can be expressed using

(
∂2ψ

∂x2

)

x0

≈
N∑

n=−N

An ψ(x0 + nh, y, z), (6)

where h is the grid spacing, N is the number of nearest grid
points and An are the coefficients for evaluating the required
derivatives [14]. The error scales as O(h2N+2).

Once the secular equation is created, the eigenvalue
problem can be solved using iterative methods [12, 15, 16].
Typically, a method such as a preconditioned Davidson method
can be used [12]. This is a robust and efficient method,
which never requires one to store the Hamiltonian matrix.
Our method utilizes a damped Chebyshev polynomial filtered
subspace iteration. In our approach, only the initial iteration
necessitates solving an eigenvalue problem, which can be
handled by means of any available efficient eigensolver. This
step is used to provide a good initial subspace (or good initial
approximation to the wavefunctions). Because the subspace
dimension is slightly larger than the number of wanted
eigenvalues, the method does not utilize as much memory as
standard restarted eigensolvers such as ARPACK and TRLan
(Thick–Restart, Lanczos) [17, 18]. Moreover, the cost of
orthogonalization is much reduced as the filtering approach
only requires a subspace with dimension slightly larger than the
number of occupied states and orthogonalization is performed
only once per SCF iteration. In contrast, standard eigensolvers
using restart usually require a subspace at least twice as large
and the orthogonalization and other costs related to updating
the eigenvectors are much higher.

The main idea of the proposed method is to start with a
good initial eigenbasis, {ψn}, corresponding to occupied states
of the initial Hamiltonian, and then to improve adaptively
the subspace by polynomial filtering. That is, at a given
self-consistent step, a polynomial filter, Pm(t), of order m is
constructed for the current Hamiltonian H. As the eigenbasis
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Figure 1. Schematic example of a damped Chebyshev polynomial,
C6. The shaded area corresponds to a hypothetical eigenvalue
spectrum regime that will be enhanced by the filtering operation
(see the text).

is updated, the polynomial will be different at each SCF
step since H will change. The goal of the filter is to make
the subspace spanned by {ψ̂n} = Pm(H){ψn} approximate
the eigensubspace corresponding to the occupied states of
H. There is no need to make the new subspace, {ψ̂n},
approximate the wanted eigensubspace of H to high accuracy
at intermediate steps. Instead, the filtering is designed so that
the new subspace obtained at each self-consistent iteration step
will progressively approximate the wanted eigenspace of the
final Hamiltonian when self-consistency is reached.

This can be efficiently achieved by exploiting the
Chebyshev polynomials, Cm , for the polynomials Pm .
Specifically, we wish to exploit the dramatic increase in
magnitude of the polynomial outside of the [−1, 1] interval.
All that is required to obtain a good filter at a given SCF
step is to provide a lower bound and an upper bound of an
interval of the spectrum of the current Hamiltonian H. The
lower bound can be readily obtained from the Ritz values
computed from the previous step, and the upper bound can
be inexpensively obtained by a very small number (e.g. four
or five) of Lanczos steps [12]. Hence the main cost of the
filtering at each iteration is in performing the products of the
polynomial of the Hamiltonian by the basis vectors.

To construct a ‘damped’ Chebyshev polynomial on the
interval [a, b] to the interval [−1,1], one can use an affine
mapping such that

l(t) = t − (a + b)/2

(b − a)/2
. (7)

The interval is chosen to encompass the energy interval
containing the eigenspace to be filtered, i.e. the lowest to
highest eigenvalues. The filtering operation can then be
expressed as

{ψ̂n} = Cm(l(H)){ψn}. (8)

This computation is accomplished by exploiting the convenient
three-term recurrence property of Chebyshev polynomials:

C0(t) = 1, C1(t) = t,

Cm+1(t) = 2tCm(t)− Cm−1(t).
(9)

Figure 2. Schematic of the self-consistent cycle using Chebyshev
filtering.

An example of a damped Chebyshev polynomial as defined by
equations (7) and (9) is given in figure 1 where we have taken
the lower bound as a = 0.2 and the upper bound as b = 2.
In this example, the filtering would enhance the eigenvalue
components in the shaded region.

The filtering procedure for the self-consistent cycle is
illustrated in figure 2. Unlike traditional methods, the cycle
only requires one explicit diagonalization step. Instead of
repeating this step again within the self-consistent loop, a
filtering operation is used to create a new basis in which the
desired eigensubspace is enhanced. After the new basis, {ψ̂n},
is formed, the basis is orthogonalized. The orthogonalization
step scales as the cube of the number of occupied states and,
as such, this method is not an ‘order-n’ method. However, the
prefactor is sufficiently small that the method is much faster
than previous implementations of real space methods [12].
The cycle is repeated until the ‘input’ and ‘output’ density is
unchanged.

The performance of our code on parallel computers
follows the typical scaling behavior of parallel applications.
Figure 3 shows the speed-up as a function of the total number
of processors. Performance tests were done on Franklin,
a Cray XT4 system maintained by NERSC. The saturation
at the high-end side is caused by two factors: portions of
the code are not parallelized (the crucial portions are well
parallelized, but some initialization functions are executed

3
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Figure 3. Examples of performance scaling for the real space
pseudopotential code.

Table 1. Comparison of computational timings for various methods
for a nanocrystal: Si525H276. While the number of SCF iterations is
comparable for all three methods, the total time with filtering
methods can be dramatically reduced.

Method SCF Its CPU(s)

Filtering 11 5947
ARPACK 10 62026
TRLan 10 26853

by a master processor only); and increasing the number of
processors but keeping the same problem size increases the
amount of data transferred among processors. The speed-up is
inversely proportional to the total run time. With fixed problem
size, the run time is the sum of time spent on distributed
operations Tp and time spent on nondistributed operations T0:

S = const/(T0 + Tp

Np
), where Np is the number of processors.

The equation is Amdahl’s law of parallel speed-up [19]. The
ratio of constants Tp/T0 is an estimate of the maximum number
of processors below which parallel scaling is preserved. In
the example of figure 3, the ratio is 520 and 700, respectively,
for Si2712H828P and Si3880H1036P, thus showing good scaling
up to approximately 512–1000 processors. Larger problem
sizes have higher turning points, so that scaling improves with
system size.

In table 1, we compare the timings using the Chebyshev
filtering method along with explicit diagonalization solvers
using the TRLan and ARPACK. These timing are for a
modest sized nanocrystal: Si525H276. The Hamiltonian size is
292 584×292 584 and 1194 eigenvalues were determined. The
numerical runs were performed on the SGI Altix 3700 cluster
at the Minnesota Supercomputing Institute. The CPU type
is a 1.3 GHz Intel Madison processor. Although the number
of matrix-vector products and SCF iterations is similar, the
total time with filtering is over an order of magnitude faster
compared to ARPACK and a factor of better than four versus
the TRLan. Such improved timings are not limited to this
particular example.

4. Electronic properties of silicon nanocrystals

We illustrate the Chebyshev filtering method for a nanoscale
system: hydrogenated silicon nanocrystals [12]. The systems

Figure 4. A ball and stick model of a hydrogenated silicon quantum
dot. The interior consists of a diamond fragment. The surface of the
fragment is capped with hydrogen atoms.

considered here are beyond the computational limits of
‘standard’ methods for obtaining a solution to the Kohn–Sham
problem.

Nanocrystals are small fragments of the bulk in which
the surface has been passivated; passivated nanocrystals
correspond to ‘quantum dots’. In the case of silicon, the
passivation is accomplished experimentally by capping the
surface dangling bonds with hydrogen atoms [20]. These
systems exhibit interesting changes as one approaches the
nanoregime [20, 21]. The largest nanocrystal we examined
contained over ten thousand atoms: Si9041H1860, which is
approximately 7 nm in diameter [12] as illustrated in figure 4.

We can also examine the evolution of the ionization
potentials (I ) and the electron affinities (A) for the quantum
dot:

I = E(N − 1)− E(N)

A = E(N) − E(N + 1).
(10)

The difference between the ionization potential and the
electron affinity can be associated with the quasi-particle gap:
Eqp = I − A. If the exciton (electron–hole) interaction is
small, this gap can be compared to the optical gap. However,
for silicon nanocrystals the exciton energy is believed to be of
the order of ∼1 eV for nanocrystals of less than ∼1 nm.

We can examine the scaling of the ionization potential
and affinity by assuming a simple scaling and fitting to the
calculated values (shown in figure 5):

I (D) = I∞ + A/Dα

A(D) = A∞ + B/Dβ
(11)

where D is the dot diameter. A fit of these quantities results in
I∞ = 4.5 eV, A∞ = 3.9 eV, α = 1.1 and β = 1.08. The fit
gives a quasi-particle gap of Eqp(D → ∞) = I∞ − A∞ =
0.6 eV in the limit of an infinitely large dot. This value is
in good agreement with the gap found for crystalline silicon
using the local density approximation [22]. The gap is not
in good agreement with experiment owing to the failure of
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Figure 5. Evolution of the ionization potential (IP) and electron
affinity (EA) with quantum dot size. Also shown are the eigenvalue
levels for the highest occupied molecular orbital (HOMO) and the
lowest unoccupied molecular orbital (LUMO).

the local density approximation to describe bandgaps of bulk
semiconductors in general.

A key aspect of our study is that we can examine the
scaling of the ionization potential and electron affinity for
nanocrystals ranging from silane (SiH4) to systems containing
thousands of atoms. We not only verify the limiting value
of the quasi-particle gap, we can ascertain how this limit is
reached, i.e. how the ionization potential and electron affinity
scale with the size of the dot and what the relationship is
between these quantities and the highest occupied and lowest
empty energy levels. At small sizes, the quasi-particle gap
will likely be correct as the ionization potential and electron
affinity are accurately determined by density functional theory
for atoms and molecules. As the dot grows, we expect
errors to be introduced, but the details are problematic without
comparisons to experimental data.

5. Vibrational modes for silicon nanocrystals

Given the energy as a function of position, we can also
examine structural and vibrational properties of nanocrystals.
Vibrational properties are easier to describe as they converge
more rapidly to the bulk values than do electronic states;
however, because they involve small changes in energy with
position, the wavefunctions need to be more highly converged.

Owing to the localized nature of nanocrystals, it is
feasible to predict vibrational mode calculations by the
direct force-constant method [23]. The dynamical matrix
of the system is constructed by displacing all atoms one
by one from their equilibrium positions along the Cartesian
directions and finding the forces induced on the other atoms
of the nanocrystal. We determine the forces using the
Hellmann–Feynman theorem in real space [24] and employed
a symmetrized form of the dynamical matrix expression [25].

The elements of the dynamical matrix, Dαβ

i j , are given by

Dαβ

i j = −1

2

[
Fα

i ({R} + dβj )− Fα
i ({R} − dβj )

2dβj

+ Fβ

j ({R} + dαi )− Fβ

j ({R} − dαi )

2dαi

]
(12)

where Fα
j is the force on atom α in the direction i and

{R} + dβj is the atomic configuration where only the atom β

is displaced along j from its equilibrium position. The value
of displacement was chosen to be 0.03 au (1 au = 0.5292 Å).
The equilibrium structure was relaxed to satisfy the maximum
forces below 5 × 10−5 Ryd au−1. For this accuracy, the grid
spacing h is reduced to 0.4 au as compared to a value of about
0.7 au, typically used for electronic properties. The Chebyshev
filtering algorithm is especially well suited for this procedure
as the initial diagonalization need not be repeated when the
geometry changes are small.

The vibrational mode frequencies and corresponding
eigenvectors can be obtained from the dynamical equation:

∑
β,k

[
ω2δαβδik − Dαβ

i j√
MαMβ

]
Aβk = 0 (13)

where Mα is the mass of an atom labeled by α and the
eigenvectors are given by the mode amplitudes, Aβk .

We considered a series of Si nanocrystals: Si29H36,
Si66H64, Si87H76 and Si281H172. The surface of the nanocrystals
were passivated by hydrogen atoms [26] where we avoid any
‘one-fold’ coordinated Si surface atoms. The interior of the
nanocrystal assumes the diamond structure with the relaxed
bond length of 2.31 Å.

In figure 6, we illustrate the evolution of the vibrational
density of states. The general features appear even in the
smallest nanocrystal as the modes are dominated by nearest-
neighbor interactions. The modes can be ascribed as follows.
The lowest energy modes (below ∼200 cm−1) are Si bond
bending modes. Si bond stretching modes occur at higher
energies (below ∼600 cm−1). The dominant peak near
500 cm−1 corresponds to the crystalline peak transverse optical
(TO) mode. The TO mode is Raman active in crystalline Si
and is claimed to be size-dependent [28, 29]. The region above
the Si–Si bond stretching modes is related to Si–H dominated
vibrations such as librations and scissor motions. This modes
are separated from the Si–H stretching modes by a gap from
1000 to 2000 cm−1.

In figure 7, we compare the measured vibrational modes
for crystalline silicon [27] to the modes for the largest
nanocrystal that we have considered. We ignored the Si–H
modes by limiting the comparison to modes below 600 cm−1.
The Van Hove singularities in the vibrational density of states
have clearly evolved by a nanocrystal containing a few hundred
atoms. A similar evolution of the electronic states would not
occur until the size of the nanocrystal exceeds several thousand
atoms.
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Figure 6. Evolution of vibrational modes in Si nanocrystals. For a
better visualization, the intensities of the spectra for each cluster
were divided by the number of Si atoms in the corresponding cluster.

Figure 7. Vibrational modes in bulk silicon from experiment (left)
and calculated modes for a nanocrystal (Si281H172). The experimental
results are from [27].

6. Conclusions

The algorithm presented in this paper replaces the explicit
eigenvalue calculations by an approximation of the wanted
invariant subspace, obtained with the use of Chebyshev
polynomial filters [12]. In our approach, only the initial
self-consistent-field iteration requires solving an eigenvalue
problem in order to provide a good initial subspace. In the
remaining iterations, no iterative eigensolvers are involved.
Instead, Chebyshev polynomials are used to refine the
subspace. The subspace iteration at each step is easily five
to ten times faster than solving a corresponding eigenproblem
by the most efficient eigenalgorithms. Moreover, the subspace

iteration reaches self-consistency within roughly the same
number of steps as an eigensolver-based approach.

We illustrated this algorithm by applying it to hydro-
genated silicon nanocrystals for both electronic and vibrational
modes. The largest dot we examined contained over 10 000
atoms and was ∼7 nm (Si9041H1860) in diameter. We examined
the evolution of the electronic properties in these nanocrys-
tals, which we found to assume a bulk-like configuration for
dots larger than ∼5 nm. In addition, we obtained scaling rela-
tions for the ionization potential, the electron affinity and the
quasi-particle gap over the size regime of interest. We found
the quasi-particle gap to approach the known bulk limit within
density functional theory. We did a similar calculation for vi-
brational modes, although the size of the nanocrystals is not as
large, owing to computational issues, i.e. the need for more
accurate forces, and that the vibrational modes converge to the
bulk values more rapidly than the electronic states.
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